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Abstract

Little is known about how human genetic variation affects the responses to environmental stimuli 

in the context of complex diseases. Experimental and computational approaches were applied to 

determine the effects of genetic variation on the induction of pathogen-responsive genes in human 

dendritic cells. We identified 121 common genetic variants associated in cis with variation in 

expression responses to E. coli lipopolysaccharide, influenza or interferon-β (IFNβ). We localized 

and validated causal variants to binding sites of pathogen-activated STAT and IRF transcription 

factors. We also identified a common variant in IRF7 that is associated in trans with type I 

interferon induction in response to influenza infection. Our results reveal common alleles that 

explain inter-individual variation in pathogen sensing and provide functional annotation for 

genetic variants that alter susceptibility to inflammatory diseases.

Introduction

Susceptibility to complex diseases depends on both genetic predisposition and exposure to 

environmental factors, with interactions between the two (GxE interactions) likely 

contributing substantially to disease risk (1, 2). However, the extent and mechanisms by 

which common human genetic variants interact with the environment remain poorly 

explored and have been difficult to detect in clinical studies (1, 3). Genetic analysis of 

molecular traits – such as gene expression profiles – offers a promising way to dissect the 

molecular mechanisms underlying GxE interactions. Expression quantitative trait locus 

(eQTL) studies have been used to map genetic variants contributing to variation in gene 

expression, but have largely focused on steady state expression in humans (4, 5), thus 

excluding GxE interactions. In model organisms, differences in growth conditions or 

treatment with various stimuli have revealed the existence of response eQTLs (reQTLs) 

(6-9), defined as QTLs associated with the change in expression after stimulation. Here, we 

sought to identify reQTLs in humans, to explain the mechanism by which the environment 

interacts with these variants, and to determine whether these variants are associated with 

immune-mediated diseases.

We used dendritic cells (DCs) of the innate immune system as a model system for reQTL 

studies, with physiological and clinical relevance. DCs play a direct role in the host 

recognition of pathogens using specialized sensors that engage well-characterized signaling 

and transcriptional networks. For example, bacterial lipopolysaccharide (LPS) activates two 

distinct arms of the Toll-like receptor 4 (TLR4) pathway, whereas influenza infection 

primarily activates the RNA-sensing Toll-like receptors (e.g., TLR3) and the RIG-I-like 

receptors (e.g., RIG-I) (10). These, in turn, lead to the translocation of transcription factors 

from the cytoplasm into the nucleus to induce the expression of immune genes, including 

IFNβ secretion that engages the type I interferon response pathway to induce the expression 
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of hundreds of anti-viral effectors. Genetic studies have associated common variants near 

many genes in these pathways with risk of different inflammatory diseases (11, 12). DCs 

also play a critical role in the pathologic immune responses underlying inflammatory 

diseases (11-13), also reflected in recent genome-wide association studies (GWAS) of 

several diseases (14-17), especially inflammatory bowel disease (14).

Results

Assessing the impact of genetic variation on pathogen-sensing in primary human DCs

We developed an integrated experimental and computational pipeline (Fig. 1A) to identify 

variability in human DC responses and associate this variability with common genetic 

variants. First, we optimized a high-throughput protocol to isolate primary CD14+CD16lo 

monocytes from human blood samples (figs. S1A–S1F), differentiate them into monocyte-

derived dendritic cells (MoDCs), and stimulate them with three immunostimulatory agents 

(Fig. 1B): E. coli lipopolysaccharide (LPS), influenza virus, or IFNβ (a cytokine induced by 

LPS and influenza). Second, we collected genome-wide transcript profiles from resting and 

stimulated DCs from 30 healthy individuals and computationally identified a ‘signature’ of 

415 genes that would be informative of variation in the response in a larger cohort. Third, 

we generated 1,598 transcriptional profiles (using an amplification-free platform suitable for 

small cell numbers (18)) from DCs isolated from 534 healthy individuals (295 Caucasians, 

122 African-Americans, 117 East Asians; table S1) in four states: resting, LPS-stimulated, 

influenza-infected and IFNβ-stimulated. Finally, we associated expression variation with 

genetic variation to identify cis- and trans-eQTLs and reQTLs, and investigated candidate 

reQTLs for their mechanism of action.

Variability of pathogen-sensing responses between individuals

To assess the inter-individual variability of DC responses, we first profiled genome-wide 

expression using microarrays in resting, LPS-stimulated and influenza-infected MoDCs 

isolated from each of 30 healthy individuals (18 Caucasians, 6 Asians, 6 African-

Americans). We found 1,413 genes that were regulated in LPS- or influenza-treated cells 

[log2(fold change) > 0.75 or < –1.5; FDR < 0.01; fig. S2A, table S2A; see table S2B–I for 

enriched biological processes] at 5 hrs and 10 hrs, respectively (time points selected to have 

maximal expression of induced clusters; figs. S1B and S1C).

We quantified reproducibility in these responses by recalling 12 of the 30 donors 2-9 months 

after the first collection for MoDC isolations and profiling (table S1); we identified genes 

whose inter-individual expression variance is significantly higher than their intra-individual 

variance based on the serial replicates (taking into account known covariates including 

gender, age and population and unknown ones using Surrogate Variable Analysis (SVA) 

(19)). 222 of the 1,413 regulated genes (16%) showed significantly higher (FDR < 0.1) 

inter- than intra-individual variability, either in their absolute expression or in the 

differential expression (stimulated/baseline level) to at least one stimulus (Fig. 2A and table 

S3). These results suggest that there is consistent variation in these traits that may have a 

genetic basis.
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Expression profiling of a pathogen response signature

Mapping the genetic basis of inter-individual variation in pathogen responses requires 

profiling of DC gene expression in a larger cohort; this poses a substantial technical 

challenge given the limited numbers of primary cells and multiple stimuli. Furthermore, the 

responses of DCs to virus, bacterial ligands and interferon are limited in scope, and do not 

encompass the entire genome. We therefore defined a 415 gene signature set (Fig. 2B and 

table S3) that could be monitored in small numbers of cells using a sensitive multiplex RNA 

detection system (18), allowing us to scale up our study. The signature consisted of: (1) all 

222 of 1,413 regulated genes with greater inter- than intra-individual variability in the 

microarray study; (2) all 24 regulated genes exhibiting greater inter- than intra-population 

variability (FDR < 0.1; table S3) in the microarray study; (3) 76 genes comprising the 

known components of the TLR4, TLR3, RIG-I and IFNAR pathways (Fig. 1B) (10, 20-22); 

(4) 61 regulated genes that play key roles in the DC response (e.g. IFNB1 and IFITM3) 

(22-24); (5) 28 regulated genes residing in loci previously associated with autoimmune or 

infectious diseases (25); and (6) 35 control genes including those that had among the lowest 

inter-individual variance in the microarray profiles. This representative signature allowed us 

to monitor genes with high inter-individual variability, as well as key components and 

responses of the pathogen-sensing pathway.

We then generated 1,598 transcriptional profiles, using the 415-gene signature, from 

MoDCs isolated from 534 healthy individuals (and 37 serially-collected replicates) in up to 

four conditions: resting (528 individuals), LPS-stimulated (356), influenza-infected (342) 

and IFNβ-stimulated (284) (Figs. 2C, S1E, S1F, table S1). The IFNβ stimulus allowed us to 

partition genes that were induced by both LPS and influenza (cluster III) into those induced 

secondary to type I IFN signaling (cluster IIIa) or by other mechanisms shared between 

these bacterial and viral sensing pathways (cluster IIIb) such as NF-κB or AP-1 activation 

(Figs. 2C and 1B). The signature expression profiles clustered similarly to those from the 

microarray analysis (Fig. 2C and fig. S2C), and captured most of the variance in the 

genome-wide profile (cross validation, >0.99 gtPCC; fig. S2D (26)), demonstrating the 

utility of the signature to capture the genome-wide response.

reQTLs modulate cellular responses to pathogens

We mapped cis-eQTLs and cis-reQTLsby testing for association between common SNPs 

(minor allele frequency >5%; genotyped with Illumina Human OmniExpress BeadChip) and 

variation in either absolute transcript abundance (eQTL) or stimulation-induced change in 

transcript abundance (reQTL) in a nearby gene (in which the transcriptional start site or stop 

codon is within 1Mb of the SNP). We pooled individuals from the three human populations 

together and included covariates and principal components to increase statistical power 

while avoiding systematic confounders such as population structure and expression 

heterogeneity. We identified 264 genes with cis-eQTLs in at least one condition 

(permutation FDR < 0.05; Fig. 3A, figs. S3A–C, table S4A–D) (27). Notably, 22/264 genes 

also associated with additional independent cis-eQTLs after conditioning on the top five 

most significant SNPs in each cis-eQTL region (table S6 and fig. S3D) (27), reflecting the 

complexity of the regulatory landscape around each gene.
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We detected 121 cis-reQTLs (Fig. 3B and table S4E–G; permutation FDR < 0.05; 91% 

internal reproducibility in at least 2 human populations, table S5), the subset of genetic 

variants that affect the induction of gene expression by LPS, influenza or IFNβ. Of the 121 

genes with cis-reQTLs, 7 associations were found only in the influenza condition (e.g., 

IFNA21, Fig. 3C and fig. S3B; meta-analysis, P< 1×10−5, permutation FDR 0.02-0.03), 15 

in both the LPS and influenza conditions (e.g., TEC; Figs. 3C and S3B), and 57 in all three 

stimulation conditions (e.g. ARL5B, SLFN5, CLEC4F;Figs. 3C–3E and S3B), likely 

reflecting activation of the shared IFNβ pathway. We hypothesized that causal variants 

driving cis-reQTLs alter the sequence of genomic elements that respond to transcription 

factors downstream of the pathogen-sensing receptors (Fig. 3F), and represent gene-by-

environment interactions.

To validate cis-reQTLs, we quantified allele-specific expression for pan-stimulation-specific 

associations in heterozygote individuals (Figs. 3D and 3E). This was feasible for a gene with 

an exonic SNP (CLEC4F rs2075221) that was the most significant reQTL SNP, and for a 

gene with an exonic SNP (SLFN5 rs11651240) in linkage disequilibrium (LD) with the most 

significant reQTL SNP (rs11867191, R2 = 0.501 CEU). As predicted, transcripts derived 

from the major and minor alleles differed in expression after stimulation with LPS (SLFN5, 

P< 0.001, t-test; CLEC4F, P< 0.01), influenza (SLFN5, P< 0.001; CLEC4F, P< 0.01) or 

IFNβ (SLFN5, P< 0.001; CLEC4F, P< 0.001) but not at baseline (Figs. 3D and 3E).

cis-reQTLs that alter the sequence of TF binding sites

We hypothesized that the causal variants underlying cis-reQTLs functionally alter the 

chromosomal binding sites of transcription factors activated by one or more stimuli. To fine 

map reQTLs, we performed a trans-ethnic meta-analysis (28) of imputed variants in each 

population (∼10M). We then examined whether the most highly associated meta-reQTLs 

overlap with transcription factor (TF)binding sites identified in high-throughput human 

ChIP-Seq datasets (e.g., ENCODE) or computationally-predicted conserved regulatory 

elements (29-31). We found substantial enrichment (table S7) of known binding sites for 

TFs from the STAT family (TFs that are known to be activated downstream of Type I IFN 

signaling). The most significant enrichment over background was found for STAT2 (116-

fold, binomial P< 2.55×10−21) and STAT1 (126-fold, binomial P< 2.98×10−13) binding sites 

(derived from ChIP-seq in IFNα-stimulated K562 cells) within cis-eQTLs after IFNβ 

stimulation.

Among the 57 genes (e.g., SLFN5, CLEC4F, ARL5B; Fig. 3F) with cis-reQTLs in all 3 

stimuli, we observed that the most significant cis-reQTL in the: (1 SLFN5 locus 

(rs11080327) lies in an ENCODE ChIP-Seq signal (29) for STAT1 (Figs. 4A–C); (2) 

CLEC4F locus (rs35856355) alters a commonly occurring cytosine in a canonical ISRE 

(interferon-stimulated response element) that is a target of IFN-activated transcription 

factors (Figs. 4B and 4C) (22, 30-32); and (3) ARL5B locus (rs2130531) changes a guanine 

in the canonical ISRE motif (Figs. 4B and 4C). Additional cis-reQTLs that alter putative 

STAT binding sites based on ChIP-Seq data or predicted ISRE motifs include: rs10086852 

(PTK2B), rs1981760 (NOD2), rs73023464 (C19ORF12), rs1331717 (IFI44) and rs12064196 

(IFI44) (Fig. 4A). Because STAT transcription factors are activated downstream of the type 

Lee et al. Page 5

Science. Author manuscript; available in PMC 2014 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I IFN receptor (IFNAR) and bind to ISRE motifs (Fig. 4A) (22), we hypothesized that the 

SNPs in these sites are likely causal SNPs within their respective cis-reQTL regions.

cis-reQTLs affect differential binding of stimulus-activated transcription factors

To experimentally validate our predicted regulatory mechanisms, we determined whether 

IFNβ-activated transcription factors bind differentially at these SNPs. Using radiolabeled 

24-26 bpdsDNA probes in electrophoretic mobility shift assays (EMSA), we found that 

probes encompassing the major alleles (rs35856355C and rs2130531G, which are associated 

with increased expression in CLEC4F and ARL5B), but not the minor alleles, shifted after 

incubation with IFNβ-stimulated MoDC nuclear lysates (Fig. 4D). Consistently, non-

radiolabeled major but not minor allele probes competed for binding to the IFNβ-stimulated 

nuclear factors (fig. S4A). By incubating with antibodies to transcription factors known to 

bind the ISRE element, we found that IRF1 super-shifted the low MW band and STAT2 and 

IRF9 super-shifted the higher MW band, consistent with the known complex of these latter 

two proteins (32) (Fig. 4D). These results suggested that the SNPs in CLEC4F and ARL5B 

alter the binding of IFN-activated IRF1, STAT2 and IRF9 transcription factors.

To directly test the functional effects of the SNPs, we cloned 150-200 bp genomic regions 

surrounding rs11080327 (SLFN5), rs35856355 (CLEC4F) and rs2130531 (ARL5B) upstream 

of a luciferase reporter driven by a minimal promoter (Fig. 4E). For each region, we created 

two constructs that differ only at the respective SNPs. Since almost all cell types respond to 

IFNβ stimulation, we transfected the reporter constructs into HEK-293 cells and stimulated 

the cells with IFNβ. Consistent with our hypothesis, the constructs containing the major 

alleles of rs11080327 (SLFN5), rs35856355 (CLEC4F) and rs2130531 (ARL5B) induced 

respectively 11.6-fold, 2.1-fold and 1.5-fold more luciferase production than the cognate 

constructs containing the minor alleles (t-test, P< 0.001, P< 0.001 and P< 0.01, respectively; 

Fig. 4E). Furthermore, mutation of motif-conserving nucleotides across the CLEC4F ISRE 

motif reduced induction by IFNβ while mutation of non-conserved nucleotides did not (fig. 

S4B), consistent with the ISRE consensus motif.

Finally, to further test (33) the functionality of rs11080327 – the SLFN5 variant with the 

strongest functional effect –in its native chromosome, we directly edited the genome using 

the CRISPR system (34, 35), converting the heterozygous rs11080327A/G in HEK-293 cells 

to a homozygous rs11080327G/G (Fig. 4F and fig. S4C). We then stimulated both native and 

CRISPR-converted cells with IFNβ. The fold induction of SLFN5 decreased from 3.64 in 

heterozygous cells to 1.03 in the converted rs11080327 (G) homozygotes, while the 

induction of other genes was unaffected (Fig. 4F and fig. S4C).

The enrichment, EMSA, reporter assays and directed mutagenesis results suggest that we 

have identified causal variants in some of these cis-reQTL regions and demonstrate that the 

reQTLs occur due to differential binding of stimulus-activated transcription factors.

A cis-eQTL associating with IRF7 is a trans-reQTL

We next attempted to detect cases where variation in gene expression is explained by distant 

genetic variants acting in trans. We noted that cis-eQTLs for regulator genes tend to have 
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smaller effect sizes and less significant P-values than those for regulated genes (fig. S3E). 

To decrease the multiple testing burden of detecting trans associations, we restricted testing 

SNPs local to genes on our gene signature set. A number of these are cis-eQTLs associated 

with the expression of genes encoding regulators (e.g., transcription factors) in pathways 

that we stimulated (Fig. 5A). Of these, rs12805435 was the most significant, associating 

with the expression of the master anti-viral transcription factor IRF7 in cis only after 

influenza, LPS or IFNβ stimulation(table S4A–D). This SNP associated with both the 

expression and induction of 7 additional genes in trans (i.e. the transcriptional start site or 

stop codon is located > 1 Mb from the SNP) only after influenza infection: NMI, IFNA4, 

IFNA10, IFNA13, IFNA21, IFNA17 and IFNA5 (P <6.26×10−5 in expression, P <1.68×10−5 

in differential expression; Fig. 5B and table S8–10).

To test whether the trans-associated genes are indeed targets of IRF7, we infected MoDCs 

that overexpressed IRF7 or a control gene with influenza virus, and found that IRF7 

overexpression induced the expression of IFNA2, IFNA13 and IFNA14 in influenza-infected 

cells (Fig. 5C). In addition, in HEK-293 cells, which normally express very low levels of 

IRF7, we overexpressed IRF7 and observed induction of NMI, IFNA4, IFNA10, IFNA13, 

IFNA14 and IFNA21 (Fig. 5D), suggesting that IRF7 is sufficient to drive downstream 

expression. We have thus identified a stimulus-specific cis-eQTL associated with IRF7 

expression, which is also a trans-reQTL that underlies the variability of IFN induction in 

response to influenza infection in humans.

reQTLs in DCs overlap with autoimmune and infectious disease SNPs from GWAS

We examined the subset of loci associated in genome-wide association studies (GWAS) 

with inflammatory disorders. We first extended an analysis of Crohn's disease in which loci 

are enriched for genes specifically expressed in DCs (12, 14) to multiple sclerosis, celiac 

disease, psoriasis and leprosy (fig. S5A). We found that genes nearest to the susceptibility 

loci for these diseases were not only enriched in DC-specific genes but also in genes induced 

by LPS and/or influenza (fig. S5B), suggesting that some of the GWAS loci modulate the 

expression of the corresponding genes in activated DCs.

Supporting this hypothesis, 15 cis-reQTLs and 23 cis-eQTLs that were not significant at 

baseline but only became significant after stimulation are the same SNPs previously 

identified in GWAS of autoimmune and infectious diseases, including Crohn's disease, 

multiple sclerosis, celiac disease, psoriasis and leprosy (25) (Figs. 6A, 6B and table S11). 

These include: NOD2 with leprosy (rs9302752), IRF7 with systemic lupus erythematosus 

(rs4963128), TRAF1 with rheumatoid arthritis (rs881375), and CREM with Crohn's disease 

(rs12242110) and ulcerative colitis (rs4246905). For example, rs9302752 – a SNP 

previously associated with susceptibility to leprosy (17) – was associated in our study with 

expression of NOD2 and its response under IFNβ stimulation (P = 3.49×10−25) but not at 

baseline (Fig. 6A and table S11); NOD2 plays a known role in pathogen sensing and 

possibly mycobacterial immunity (36). Similarly, rs4963128 – a variant associated with SLE 

(37) – was associated in our study with the expression of IRF7 after IFNβ stimulation (P = 

1.10×10−16) but not at baseline (Fig. 6A), in line with the importance of type I IFN 

responses in SLE pathogenesis (38). We note that rs4963128 is on the same haplotype (R2= 
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0.69, D′ = 0.94) as the IRF7 SNP rs12805435 that is associated with the trans-reQTL effect 

described above. These results suggest a role for innate immune pathogen-sensing pathways 

in the pathogenesis of these inflammatory disorders.

Discussion

While genetic association studies have identified alleles that confer disease risk, little is 

known about how these genetic variants contribute to disease through their effects on 

specific biological processes and their interaction with environmental stimuli. We addressed 

this question by quantifying the dendritic cell response to pathogens in a set of genotyped 

individuals, and then leveraged our understanding of these pathways to explain the 

mechanisms underlying the observed genotype-environment-phenotype interactions.

Many of the QTL associations we identified are only detectable in the presence of specific 

stimuli, underscoring the need to activate cells to capture additional genotype-phenotype 

relationships (39-41). Furthermore, few eQTL studies have definitively identified the causal 

variants underlying the associations. By measuring variability in hundreds of individuals, 

applying stimuli that partially overlap in their downstream pathways, and leveraging 

genomic datasets such as the 1000 Genomes Project and ENCODE (29, 42), we (i) 

pinpointed causal variants in reQTL regions and (ii) identified the stimulus-activated 

transcription factors that bind differentially at these SNPs, explaining some of the GxE 

interactions. Our dataset can thus be used to explore mechanisms of GxE interactions (43) 

and are consistent with DNaseI-sensitivity QTL (44) and ChIP-Seq QTL (45) studies that 

showed that differential transcription factor binding between individuals is pervasive in 

resting cells.

The reQTLs we identified provide genetic explanations for inter-individual variation in 

innate immune responses. This is best exemplified by the trans-reQTL in the IRF7 locus that 

regulates the type I IFN anti-viral response. Our study reveals the effects of this trans-

reQTL on target genes (anti-viral IFN module) in the context of a particular cell type (DCs) 

and in response to specific ligands (influenza). The changes in this immune response are, in 

turn, likely to impact organismal phenotypes that are driven by the IFN module, including 

susceptibility to viral infections and autoimmune diseases like SLE.

Overall, our high-throughput experimental pipeline and integrative analysis of primary 

human dendritic cells reveals abundant gene-by-environment interactions, points to the 

effects of disease variants on pathogen detection, and motivates extending our approach to a 

wide variety of immune cell types and stimulatory conditions to better explain the impact of 

human genetic variation on the immune response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A strategy to identify gene-by-environment interactions in the innate immune responses 
of primary human dendritic cells
(A) Strategy used to identify baseline and response expression quantitative trait loci (eQTLs 

and reQTLs), consisting of five steps: (i) high-throughput isolation and stimulation of 

primary human MoDCs from 560 healthy individuals (dotted slices, male; solid-colored 

slices, female) collected as part of the PhenoGenetic cohort; (ii) whole-genome gene 

expression measurements in a subset of the cohort; (iii) selection of signature gene set, 

consisting of regulators and regulated genes; (iv) digital multiplex gene expression 

measurements of signature genes in the entire cohort; and (v) mapping of genetic variation 

to expression variation. GM-CSF, granulocyte-macrophage colony-stimulating factor; IL-4, 

interleukin-4. (B) Model of innate immune pathways activated by three stimuli 

demonstrating their downstream relationships. Lipopolysaccharide (“LPS”) from E. coli 

engages the TLR4 receptor; interferon-beta (“IFNβ”) engages the heterodimeric IFNAR 

receptor; influenza A/PR8 (ΔNS1) (“FLU”) engages the cytoplasmic TLR3 and RIG-I 

receptors. Receptor engagement activates signal transduction cascades that regulate 

expression of inflammatory genes, IFNs and IFN-stimulated genes. IFNAR activation also 

occurs during LPS and FLU stimulations because LPS and FLU both induce IFN 

production, leading to activation of ISREs. JAK1, Janus kinase 1.
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Fig. 2. Genome-wide expression profiles in MoDCs reveal response phenotypes
(A) Coefficient of variation (CV) of gene expression between 30 different donors (“Inter-

individual CV”) plotted against CV of expression within 12 serial replicate samples (“Intra-

individual CV”) for each differentially regulated (fold change >0.75 or <–1.5) gene 

following LPS or FLU stimulation. Yellow (up-regulated) and purple (down-regulated) 

circles represent genes with significant (moderated t test, FDR < 0.1) inter- vs. intra-

individual variation. Right, log2(expression, microarray data) of CLEC4F in baseline, LPS-

stimulated and FLU-infected MoDCs from 30 donors and 12 replicates, demonstrating 

example of a gene that shows significant (FDR < 0.01) inter- vs. intra-individual variation 

following LPS and FLU stimulations but not at baseline (fig. S2B). Standard error of 

replicate samples (n = 12) is shown for each sample. (B) Pie chart of 415 signature genes 

selected for Nanostring codeset: 222 (49%) are regulated genes that showed significant 

(mixed model variance components test, permutation FDR < 0.1) inter- vs. intra-individual 

variability; 61 (14%) are curated, regulated genes with a known function in the innate 

immune response; 76 (17%) are curated regulators in the TLR4, TLR3, RIG-I and IFNAR 

pathways; 41 (9%) are control genes including low-variance genes, sex-specific genes and 

non-expressed genes; 28 (6%) are regulated genes that were reported in the regions of 

autoimmune and infectious disease GWAS; and 21 (5%) are regulated genes that showed 
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significant inter- versus intra-population variability. (C) Gene expression heatmap of the 

415-gene signature in MoDCs from the microarray study (30 individuals) and the 

Nanostring study (534 individuals). Each row represents a gene; each column represents a 

donor sample at baseline, stimulated with LPS, infected with FLU or stimulated with IFNβ. 

Rows were clustered by k-means clustering of Nanostring dataset with major clusters (I, II, 

IIIa, IIIb and IV) labeled. Between the two heat maps, each row was labeled with colored 

dashes corresponding to one of the 6 categories described in (B).
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Fig. 3. Association analysis reveals cis-eQTLs and cis-reQTLs
(A and B) Manhattan plot of cis-eQTLs (A, baseline expression) and cis-reQTLs (B, LPS-, 

FLU- and IFNβ–stimulated fold changes relative to baseline) showing −log10(P values) (left 

y axis) and R2 values (right y-axis) for all cis-SNPs, which are displayed on the x-axis with 

associated genes ordered by their chromosomal location. (C) Box-whisker plots showing 

expression (left; log2(nCounts), y-axis) or fold change (right; log2(fold), y-axis) of DCBLD1, 

IFNA21, TEC and ARL5B in resting, LPS-stimulated, FLU-infected and IFNβ–stimulated 

MoDCs as a function of genotype of the respective cis-SNPs (x-axis: rs27434, rs10964871, 

rs10938526 and rs11015435). African Americans, Asians and Europeans in this order are 

displayed as separate box-whisker plots adjacent to each other in each condition. −Log10(P 

values) and β statistics are displayed in top right corners. (D and E) Allelic imbalance 

analysis of SLFN5 (D) and CLEC4F (E) in resting, LPS-stimulated, FLU-infected and 

IFNβ–stimulated MoDCs, showing the ratio of gene expression between the major and 

minor alleles in heterozygote (rs11651240 for SLFN5, rs2075221 for CLEC4F) cDNA 

samples (n = 8 in (D); n= 9 in (E)) normalized to the ratio in the corresponding genomic 

DNA samples; significant deviation from 1.0 (dashed line) is consistent with allelic 
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imbalance. Data are from one experiment representative of three (mean and standard 

deviation shown). *P< 0.01, **P< 0.001, compared to unstimulated cells (Student's t-test). 

On the right panels, box-whisker plots showing expression (left; log2(nCounts), y-axis) or 

fold change (right; log2(fold), y-axis) of SLFN5 (D) and CLEC4F (E) in resting, LPS-

stimulated, FLU-infected and IFNβ–stimulated MoDCs as a function of genotype of the 

respective cis-SNPs: rs11867191 and rs2075221. (F) Schematic showing the different 

combinations of stimuli leading to significant cis-reQTLs, with the most significant 

examples listed. Specificity to conditions was defined with M-value >0.9 taken as the 

inclusion criteria and M-value <0.1 taken as the exclusion criteria for each condition.
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Fig. 4. Functional fine-mapping and mechanism of cis-reQTLs
(A) Pathway diagram of signal transduction cascade downstream of IFNAR activation. 

Activation of receptor leads to downstream activation of JAK-STAT cascade, leading to 

posttranslational activation of STAT and IRF transcription factors. (B) LocusZoom plots 

showing the −log10(P-values) of imputed cis-eQTLs (y-axis) in the chromosomal regions (x 

axis) of SLFN5, CLEC4F and ARL5B. The most significant imputed SNPs in each locus are 

labeled. (C) Schematic representation of alleles in the regions near the SLFN5, CLEC4F and 

ARL5B genes that are in STAT2 ChIP-Seq binding sites or that perturb ISRE motifs (SNPs 

are shown as vertical bars and in red letters). (D) Elecrophoretic mobility shift assays 

(EMSA) with 24- to 26-bpradiolabeleddsDNA probes—containing a known ISRE motif 

control, a mutated ISRE motif control, the CLEC4F rs35856355 major (C) or minor allele 

(A) sequences, or the ARL5B rs2130531 major (G) or minor allele (A) sequences—

incubated with nuclear lysates from IFNβ–stimulated MoDCs. On the right, supershift 

assays with or without antibodies against IRF1, IRF9, and STAT2 (designated α-IRF-1, and 

so on) with the CLEC4F rs35856355 major (C) probe are shown. (E) Luciferase expression 

from reporter constructs transfected into HEK293 cells that were left unstimulated or were 

stimulated with 1000 U/mLIFNβ for 21 h. 150–200 bp sequences from the major and minor 

haplotypes of the SLFN5, CLEC4F and ARL5B regions were subcloned 5′ of a minimal 

promoter and firefly luciferase gene. Firefly luciferase expression was normalized to Renilla 

luciferase expression expressed from cotransfected plasmid. (F) Fold change log2(IFNβstim/

unstim) of signature genes in wild-type HEK-293 cells (rs11080327A/G), plotted against fold 

change in CRISPR-converted (rs11080327G/G) HEK-293 cells. Data are from one 

experiment representative of three (mean and standard shown in (E)). *P< 0.05, **P< 0.01, 

compared to unstimulated cells (Student's t-test).
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Fig. 5. Trans-reQTL association at the IRF7 cis-regulatory locus
(A) Diagram showing selected components of TLR4, TLR3, RIG-I and IFNAR pathways. 

Components with significant cis-eQTLs (permutation FDR < 0.05) are shown in black (or 

red if they also have a trans-eQTL); components that do not have significant cis-eQTLs are 

shown in grey. (B) Manhattan plot showing the trans-association of rs12805435 to all 415 

genes on signature gene set in baseline, LPS-stimulated, FLU-infected and IFNβ–stimulated 

conditions. Trans-reQTL to NMI and cluster of IFNα genes (IFNA4, IFNA10, IFNA13, 

IFNA17 and IFNA21) are labeled. (C) Expression (log2(nCounts)) of 415 signature genes in 

FLU-infected MoDCs overexpressing IRF7, plotted against expression in FLU-infected 

MoDCs overexpressing eGFP control. (D) Expression (log2(nCounts)) of 415 signature 

genes in HEK-293 cells overexpressing IRF7, plotted against expression in HEK-293 cells 

overexpressing eGFP control. Right, expression of genes in cells with eGFP overexpression 

vs. cells without cDNA.
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Fig. 6. Autoimmune and infectious disease–associated SNPs are cis-eQTLs and cis-reQTLs
(A) Expression (log2(nCounts)) of NOD2 in resting and IFNβ–stimulated MoDCs from 184 

Caucasians as a function of genotype of the leprosy GWAS SNP, rs9302752 (left). Right, 

expression (log2(nCounts)) of IRF7 in resting and IFNβ–stimulated MoDCs from 184 

Caucasians as a function of genotype of the SLE GWAS SNP, rs4963128. (B) Plot showing 

overlap of genome-wide significant (P< 5×10−8) GWAS SNPs with cis-eQTLs and reQTLs 

in MoDCs, with clinical phenotypes connected to corresponding gene expression 

phenotypes by lines. Orange circles represent cis-reQTLs (P< 10−7); yellow circles represent 

stimulus-specific cis-eQTLs (P< 10−7).
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